a2 United States Patent

Payne et al.

US009424426B2

US 9,424,426 B2
Aug. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54) DETECTION OF MALICIOUS CODE
INSERTION IN TRUSTED ENVIRONMENTS

(71) Applicant: Coveros, Inc., Fairfax, VA (US)
(72) Inventors: Jeffery Payne, Paconian Springs, VA
(US); Mark Fenner, Forty Fort, PA
(US); Richard Mills, Ashburn, VA (US)
(73) Assignee: COVEROS, INC., Fairfax, VA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/258,741
(22) Filed: Apr. 22, 2014
(65) Prior Publication Data
US 2015/0302198 Al Oct. 22, 2015
Related U.S. Application Data
(60) Provisional application No. 61/815,311, filed on Apr.
24, 2013.
(51) Imt. ClL
GO6F 12/14 (2006.01)
GO6F 21/56 (2013.01)
(52) US. CL
CPC it GO6F 21/562 (2013.01)

(58) Field of Classification Search
None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2011/0161912 A1* 6/2011 Eteminan GOG6F 8/20
717/101

2012/0317645 Al* 12/2012 Fortier GOG6F 21/566
726/24

2013/0340076 Al* 12/2013 Cecchetti et al. 726/23

* cited by examiner

Primary Examiner — Brandon Hoffman
(74) Attorney, Agent, or Firm — Terry M. Sanks, Esq.;
Beusse Wolter Sanks & Maire, PLLC

(57) ABSTRACT

Methods and computer program products which facilitate
detection of malicious code insertion by an insider during
the software development lifecycle are disclosed Aspects
focus on behavioral characteristics associated with the intro-
duction of malcode during the software development pro-
cess. Injection of malcode by an insider threat, and the
malcode itself, may leave behind behavioral signatures in
the source code repository and source code that can be
detected by a multi-dimensional combination of sensors. By
detecting the behavioral signatures of malcode within arti-
facts generated by the software development process,
instances of malcode can be isolated and prevented before
release.

18 Claims, 4 Drawing Sheets

302 300
304
J

Connect to a developer
computing device

Flag the development | 314
action and developer
associated with the

insertion

l 306

Collect behaviorat }—
tracking data

Store collected
data
Analyze coltected
data

310

Does
anatlysis
indicate malicious
code was
inserted?

US 9,424,426 B2

Sheet 1 of 4

Aug. 23, 2016

U.S. Patent

acl
esegeieq

Aemalen) aoiop, HOMBS GBM

Aemorweo) Buibeq Aemeres pi

™ ™
gl 9Ll

Kemajen) SNS Aemeieo) jielig

™ .J
il AN

LOL

A

U.S. Patent Aug. 23,2016 Sheet 2 of 4 US 9,424,426 B2

202
~—{ Start)
\ 4

204

N
(o]

Collect data about
software developer
behavior within software
development
environment

v 206
) |/
Store collected data in a
database

v 208
Process collected data for)
indications of malcode
insertion by software
developer

v 210

/)

Present results of
processing to a user

\ 4 212
End

FIG. 2

U.S. Patent Aug. 23,2016 Sheet 3 of 4 US 9,424,426 B2
~— Start)
304
. _J
Connect to a developer
computing device
A 4 306
Collect behavioral -—
tracking data
\ 308
Store collected
data
310
\ 4

Analyze collected
data

Does
analysis
indicate malicious
code was
inserted?

Yes

v
Flag the development

action and developer
associated with the
insertion

314

316

End

) 4

FIG. 3

No

U.S. Patent

Presentation
Module
416

Aug. 23, 2016

Sheet 4 of 4
400
{
Processing
Device(s)
406

7e) -
412 T I
System Media
RAM Z&M Device(s)
402 408
A
¥,
(’// ’\.\\.
N/
input Module(s) Computer-Readable
414 Medium Examples
410

US 9,424,426 B2

TN
Communication
Conduits(s) }
422 o

i Network |
. Interface(s) |
‘ 420 ‘

For
Example:

US 9,424,426 B2

1
DETECTION OF MALICIOUS CODE
INSERTION IN TRUSTED ENVIRONMENTS

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 61/815,311, filed Apr. 24, 2013, and
entitled “Detection of Malicious Code Insertion in Trusted
Environments,” the entire contents of which is incorporated
herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

Aspects of the present disclosure were made with gov-
ernment support under FA8750-11-C-0106 awarded by the
Department of the Air Force. The government has certain
rights in this disclosure.

FIELD OF THE DISCLOSURE

The present disclosure generally relates to electronic
security and more particularly to detecting and preventing
insertion of malicious code.

BACKGROUND

Malicious code (malcode) may be inserted into software
applications during the software development lifecycle
(SDLC). Malcode includes computer viruses, exploits,
worms, logic bombs, keyloggers, spyware, Trojan horses
and the like. Malcode is used to disrupt computing device
operations, repurpose or hijack computing devices, gather
sensitive information, gain access to access-controlled sys-
tems, and the like. Similarly, malcode may also be designed
to affect all or portions of a computer network, including
coopting a network to further spread the malcode, gather
sensitive information, and the like.

Sophisticated malcode attacks demonstrate the far-reach-
ing consequences of these tactics. It is important to avoid or
mitigate such attacks because software and electronically
stored information plays a pervasive and crucial role in
individuals personal lives, business, and in national security.
Physical property can also be affected by malcode. For
example, the Stuxnet computer worm was engineered to
spread across computer networks and infiltrate and attack
programmable logic controllers made by a specific company
connected to specified motors used uranium enrichment in
order to curtail weapon of mass destruction development
programs in rogue nations. This was the first widely reported
instance of malcode destroying physical devices.

Software plays an increasingly important role in national
security. For example, software supports defense communi-
cations and mission. Software controls the critical infra-
structure and weapon systems that protect the homeland.
Unfortunately, the mission-critical nature of this software
has made it a target for attack. U.S. adversaries, including
spies and terrorists, are constantly working to compromise
defense systems and critical infrastructure software. A 2008
report from the U.S. Department of Defense has highlighted
this risk, stating “High-end attackers will not be content to
exploit opportunistic vulnerabilities, which might be fixed
and therefore unavailable at a critical juncture. They may
seek to implant vulnerability for later exploitation.

Substantial research and development has explored meth-
ods and technologies for preventing attacks on critical

15

20

25

30

35

40

45

50

55

60

65

2

software systems. Prevention techniques include restricting
access, proactively identifying network and application vul-
nerabilities, and monitoring both networks and applications
to detect intrusions. While all of these techniques have been
successful at reducing the threat of system compromise, they
are ineffective when applied to an insider threat. An insider
threat is any effort being performed in support of an adver-
sarial mission or goal from within a trusted environment.
What sets insider threats apart from other threats is the use
of normal activities by adversaries to accomplish abnormal
and malicious missions. Normal activities include support-
ing deployed software platforms and assisting in portions of
the software development cycle. Many security defenses
seek to identify adversaries by their abnormal tactics; there-
fore it is often difficult to detect insider threats with tradi-
tional approaches.

Identification of malcode when it is being inserted into
software applications during the software development
cycle stops malcode before it can be implemented or dis-
tributed. This minimizes and in most cases eliminates the
potentially dangerous consequences the malcode is intended
to implement because the malcode can be removed before
the software is released “into the wild.” Furthermore, iden-
tification facilitates apprehending the individuals or groups
who sought to implement the malcode in the first place.
Compared to attempting to identify the person who imple-
mented the malcode after the software has been released and
the failures have been identified through experiencing the
effects of the malcode, connecting the malcode to the
individual who sought to implement is easier to facilitate
when the malcode is quickly identified during development.

While some types of malware can be identified using
off-the-shelf virus and malware detectors, malcode incorpo-
rated into source code during the software engineering
process is far more difficult to detect. Sophisticated malcode,
placed in source code, can look just like normal application
logic when coded as part of the software development
process. Likewise, malcode can be obfuscated effectively
when crafted properly. Detailed, insider knowledge of an
application and its environment can also help an adversary
create malcode that is more difficult to detect and also more
effective than generic malware.

Current approaches that attempt to identify malcode dur-
ing development rely on techniques borrowed from generic
software security analysis, namely: examining coding con-
structs for suspicious functionality, analyzing structural
characteristics of binary code, or security testing for vulner-
abilities. These techniques may be applied to detect malcode
during software development but the solutions are not
specific to insider threats or the detection of malcode created
within otherwise legitimate software. Many of the current
techniques have a significant number of false positives, due
to the difficulty in distinguishing between legitimate func-
tionality and malicious code. Further, due to an adversary’s
ability to obfuscate their intent, such techniques are prone to
returning a significant number of false negatives, failing to
detect the presence of malcode. Furthermore, malicious code
can often appear to be a mistake, providing malicious
insiders with plausible deniability when the malcode is
discovered.

Given the foregoing, facilitating identification of malcode
inserted during the software development cycle is needed. In
particular, reductions of false negatives and false positives
and detection of malcode created within otherwise legiti-

US 9,424,426 B2

3

mate software is desired. Further, what is needed are ways
of facilitating identification of malcode insertion by insiders.

SUMMARY

This Summary is provided to introduce a selection of
concepts. These concepts are further described below in the
Detailed Description section. This Summary is not intended
to identify key features or essential features of this disclo-
sure’s subject matter, nor is this Summary intended as an aid
in determining the scope of the disclosed subject matter.

Aspects of the present disclosure meet the above-identi-
fied needs by providing methods and computer program
products which facilitate, during the software development
cycle, identification of malcode planted within software by
an insider. Due to the difficulty in identifying malcode at the
development stage, such methods and computer program
products may be used in concert with prior techniques.

Specifically, in an aspect, methods and computer program
products are disclosed which focus on behavioral charac-
teristics associated with the introduction of malcode during
the software development process. Injection of malcode by
an insider threat, and the malcode itself, may leave behind
behavioral signatures in the source code repository and the
source code, itself, that can be detected by a multi-dimen-
sional combination of sensors. Further, the combination of
multiple sensors decreases the number of false positive
alerts and false negative non-detection of malcode. By
detecting the behavioral signatures of malcode within arti-
facts generated by the software development process,
instances of malcode can be isolated from within large code
bases. Doing so results in a significant reduction in false
positives and false negatives.

In an aspect of the present disclosure, a multi-dimensional
analysis utilizing multiple sensors analyzes activity during
the software development cycle. Code locations that are
flagged by multiple sensors are more likely to include
malcode and are thus tagged or otherwise noted for further
analysis and/or removal. Dimensions analyzed may include
coding habits, testing habits, work habits and build habits.

An aspect of the present disclosure comprises various
tools and frameworks to glean information from software
development artifacts (such as code, test case, source reposi-
tory meta-data, etc.) and code that implements specific
sensors, coordinates analysis activities, and aggregates
results.

Aspects of the present disclosure may detect, among other
types of malcode, time bombs within source code applica-
tions. Time bombs are a form of triggered behavior. They
may be utilized to perform a nefarious act at a particular time
in the future (absolute or relative).

Aspects of the present disclosure may be configured to
reduce false negatives, reduce false positives, function with
one or more sensors not being used, and analyze large
programs quickly.

The present disclosure may be used to facilitate analyzing
software development artifacts (e.g., source code, test
results, source code repository meta-data, and build envi-
ronment information) to identify malicious code resident
within software. Aspects may be used to that complement
static code analysis and collectively point toward malcode.

Further features and advantages of the present disclosure,
as well as the structure and operation of various aspects of
the present disclosure, are described in detail below with
reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present disclosure will
become more apparent from the Detailed Description set

10

15

20

25

30

35

40

45

55

60

65

4

forth below when taken in conjunction with the drawings in
which like reference numbers indicate identical or function-
ally similar elements.

FIG. 1 is a block diagram of an exemplary environment
in which malcode inserted by insider threats within a soft-
ware development lifecycle is identified, according to an
aspect of the present disclosure.

FIG. 2 is a flowchart illustrating an exemplary process for
collecting information about software developer behavior in
a software development environment and analyzing the
collected information in order to identify malcode insertion,
according to an aspect of the present disclosure.

FIG. 3 is a flowchart illustrating an exemplary process for
implementing an analysis engine to identify malcode inser-
tion in a trusted environment, according to an aspect of the
present disclosure.

FIG. 4 is a block diagram of an example computing
system useful for implementing the present disclosure.

DETAILED DESCRIPTION

The present disclosure is directed to methods and com-
puter program products for facilitating the identification of
malicious code (malcode) inserted into software applica-
tions during the software development lifecycle (SDLC).
Such methods and computer program products analyze
behavior during the SDLC in order to identify the insertion
of' malcode. The present disclosure may be used to facilitate
analyzing software development artifacts (e.g., source code,
test results, source code repository meta-data, and build
environment information) to identify malicious code resi-
dent within software. Aspects may be used to that comple-
ment static code analysis and collectively point toward
malcode.

Behavioral characteristics associated with the introduc-
tion of malcode during the software development process
are utilized to detect the injection of malcode by insider
threat. A multi-dimensional combination of sensors may be
utilized to detect malcode.

In an aspect of the present disclosure, a multi-dimensional
analysis utilizing multiple sensors analyzes activity during
the software development cycle. Code locations that are
flagged by multiple sensors are more likely to include
malcode and are thus tagged or otherwise noted for further
analysis and/or removal. Dimensions analyzed may include
coding habits, testing habits, work habits and build habits.

An aspect of the present disclosure comprises various
tools and frameworks to glean information from software
development artifacts (such as code, test case, source reposi-
tory meta-data, etc.) and code that implements specific
sensors, coordinates analysis activities, and aggregates
results.

Aspects of the present disclosure may detect, among other
types of malcode, time bombs within source code applica-
tions.

An insider threat is any effort being performed in support
of an adversarial mission or goal from within a trusted
environment. The software development lifecycle may
include requirements, design, implementation, build, test-
ing, deployment, and maintenance. Malicious code, or mal-
code, describes intentionally crafted SDLC artifacts that
cause undesired effects, security breaches, damage to a
system, or the like. Malcode may be engineered to cause
security compromise such as: unauthorized system access or
modification, unauthorized data access or modification,
unauthorized monitoring or recording of activities, interfer-

US 9,424,426 B2

5

ence with normal activities, propagation of malicious func-
tionality to other systems, or a combination of these com-
promises.

Malicious code also includes any code added, changed, or
removed from a software system in order to intentionally
cause harm or subvert the intended function of the system.

Malcode may cause a variety of unauthorized actions
including privilege escalation, triggered events, deceitful
functionality, nefarious communication, self-replicating
code, obfuscation, and dynamic code behavior. Privilege
escalation (e.g., backdoor or trapdoors) includes methods of
bypassing authentication or other security controls in order
to access a computer system or the data contained on that
system such as special credentials, hidden commands or
purposefully poor authentication protocols. Triggered events
are malicious functionality set to detonate at a particular
time or by a certain logical event in the software such as a
time bomb or logic bomb. Deceitful functionality is func-
tionality that masquerades as one set of functionality while
performing malicious acts, such as a Trojan horse. Nefarious
communication is the establishment and use of authorized
and unauthorized communication channels for illegitimate
purposes such as monitoring. Self-replicating code is soft-
ware that is able to replicate itself into another application or
onto another system such as a virus or worm. Malicious code
is often obfuscated to escape detection via, for example,
encoding, encryption and the like. Dynamic code behavior is
code that is dynamically injected into an application, com-
piled during program execution, or spawned and run from
within another application such as a command shell, an
attack script and the like.

A behavioral signature is a pattern that includes the steps
necessary to carry out a given task. For example, in com-
puter systems, writing information to a file requires (1) have
the target information available, (2) identifying the target
file, (3) opening the target files, (4) writing the information
to the target file, and (5) closing the target file. If any of these
steps are missing, the fundamental behavior is not that of
writing to a file. Thus, these steps constituted a set of
defining characteristics which, although they may be imple-
mented in different ways, must be present in some fashion
in all file writing operations. Each of these steps constitutes
a dimension of the file writing operation.

The behavior of engineers and others involved in the
SDLC may indicate the creation or implementation of
malcode. Types of behavior include irregular coding, irregu-
lar testing, irregular builds, and irregular work habits.

With respect to irregular coding behaviors, software engi-
neers are creatures of habit and this is reflected in the code
they write. Much like a writer has a writing style, a software
developer tends to create code that is structured in a par-
ticular way. Everything from the complexity of the logic to
how variable names are defined to the use of parentheses is
typically consistent across all functions and modules a
programmer creates. This consistency may be observed,
documented and a template or baseline stored for compari-
son to code as its being created.

Unfortunately for the malicious insider, malcode for a
given task must follow a behavioral signature for that task.
The structure of the malcode provides a behavioral signature
for that code. Sometimes this structure will be much differ-
ent than the rest of the code. Other times the code will need
to include particular programming constructs, function calls,
or operators/operands that are known to be used to create
malicious code.

Observable aspects of irregular coding behaviors include
variations in code complexity, code style, and condition

10

15

20

25

30

35

40

45

50

55

60

65

6

taints. Differences in code complexity include differences in
information volume and coding complexity between code
modules. Differences in code style includes differences in
coding structure or coding practices between code modules.
Condition taints includes relationships between suspect vari-
ables and functions and the locations those variables and
functions are used within conditionals.

In addition to these behaviors, traditional static code
analysis results can be incorporated in as well such as
detecting violations of secure coding standards (e.g., coding
practices that are not generally accepted to be secure) and
implementing dangerous coding constructs (e.g., use of
libraries and function that are often used in the creation of
malcode).

Irregular testing seeks to identify areas within the soft-
ware that are not appropriately tested. Malicious code often
includes hidden functionality that is placed within condi-
tionals that are only exercised when a malicious insider
chooses to trigger the attack. Exercising the malcode will
typically expose it. If the code is exercised, the must be
crafted to not reveal the malicious behavior. Irregular testing
behaviors include code coverage (e.g., unexercised code
including blocks, specific conditions within conditionals,
dead code), test quality (e.g., the quality of the tests that exist
in terms of identifying defects) and test case volume (e.g.,
the amount of tests associated with code).

Test case volume seeks to distinguish between areas of the
software that are adequately tested and those that are not by
the amount of tests that exists for a given area. As malicious
code must often be very carefully tested by an insider threat
as to not reveal its true purpose, it is likely that the amount
of tests that exist will be different than in other areas of the
code.

Irregular work habits are useful in detecting malcode
insertion because, when malicious code is being introduced
into an application, it is likely that the overall process the
insider threat will follow for coding, testing, and building
software will change to assist in escaping detection or due to
the nature of the malicious code that is introduced. These
changes are detectable across a set of irregular work habits
that include: work times (e.g., work performed at odd
hours), check-in frequency (e.g., changes in check-in fre-
quency or pattern), and areas of focus (e.g., sudden changes
in the areas of code that are being implemented or modified).
This is of particular concern when these areas appear to have
no clear tie to the other work being done by an individual.
Changes in comment style and volume may also be relevant.

Information on irregular work habits can be culled
directly from the meta-data collected and stored within a
project repository as software is coded, tested, and built.
This information can be analyzed for a particular snapshot in
time or compared over time to detect relevant anomalies.

Modifications to the build process may support the nefari-
ous purposes of an insider. As the build process controls
which code is part of the resulting application(s), a malicious
insider may modify this process to support their mission.
Areas associated with the build process that can be used to
support malicious intent include: (1) compiler flags and
environment variables used to direct the compile process,
(2) build scripts that control the overall build process and
ultimate location of resulting executables, and (3) file direc-
tory paths that dictate where to find necessary code, librar-
ies, and objects.

Irregular build habits that support the detection of mali-
cious code include: changes to build configuration, utiliza-
tion of new libraries without associated source code that can
be reviewed and modification of resulting binary and execut-

US 9,424,426 B2

7

able files by other commands within the build process. As an
example, a simple change to a compile line in a make file
from: gce main.c-Inormal.a-Imalicious.a to gec main.c-Ima-
licious.a-Inormal.a will change which object code is linked
into a program if the libraries malicious.a and normal.a
include functions of the same name. A malicious insider can
use this capability to replace legitimate functions with
malicious ones

In aspects of the present disclosure, a sensor is the basic
tool for measuring an observable behavior. A detector is one
or more sensors and a means to combine them which results
in identification of an adversarial mission or a component.
Multi-dimensional analysis is the use of a combination of
sensor to categorize or recognize a behavioral signature.

Malcode indicators may be tied to genesis, time of intro-
duction, or location. Genesis categorizes by the original
intent or type of error. Time of introduction categorizes by
when, during the software lifecycle, it is introduced. Loca-
tion categorizes by position within a software development
stack or reference model.

Referring now to FIG. 1, a block diagram of an exemplary
system 100 for facilitating the identification of malcode
inserted into software applications during the software
development lifecycle (SDLC), is shown.

Software development environment 100 includes a plu-
rality of developers 102 (shown as developers 102a-d in
FIG. 1) accessing—via a computing device 106 (shown as
respective computing devices 106a-d in FIG. 1) and a
network 108, such as the global, public Internet—an appli-
cation service provider’s cloud-based, Internet-enabled
infrastructure 101.

In various aspects, computing device 106 may be config-
ured as: a desktop computer 1064; a laptop computer 1065;
a Personal Digital Assistant (PDA) or mobile telephone
106¢; a tablet or mobile computer 1064; any commercially-
available intelligent communications device; or the like.
System 100 may further comprise printing devices such as
inkjet, thermal, or laser printers (not shown in FIG. 1).

As shown in FIG. 1, in an aspect of the present disclosure,
an application service provider’s cloud-based, communica-
tions infrastructure 101 may include one or more web
servers 110, an email gateway 112, an SMS gateway 114, an
Instant Message (IM) gateway 116, a paging gateway 118, a
voice gateway 120, and a database 122. Database 122 may
be configured to store software being developed, behavioral
tracking data, baseline behavior parameters, information
related to developer work habits, and the like. In alternate
aspects, database 122 may comprise one or more data stores
within (or remotely located from) infrastructure 101 or be a
memory included in (or coupled to) web server 110. In an
aspect, database 122 is remotely located and connected to
network 108. In an aspect, database 122 comprises one or
more source code repositories. Database 122 may house
portions of or all code associated with a given software
development project, including but not limited to previous
versions of the source code, code in development, and the
like.

As will be appreciated by those skilled in the relevant
art(s) after reading the description herein, in such an aspect,
an application service provider—an individual person, busi-
ness, or other entity—may allow access, on a free registra-
tion, paid subscriber and/or pay-per-use basis, to infrastruc-
ture 101 via one or more World-Wide Web (WWW) sites on
the Internet 108. Thus, system 100 is scalable.

As will also be appreciated by those skilled in the relevant
art(s), in an aspect, various screens would be generated by
server 110 in response to input from developers 102 over

10

15

20

25

30

35

40

45

50

55

60

65

8

Internet 108. That is, in such an aspect, server 110 is a
typical web server running a server application at a website
which sends out webpages in response to Hypertext Transfer
Protocol (HTTP) or Hypertext Transfer Protocol Secured
(HTTPS) requests from remote browsers on various com-
puting devices 106 being used by various developers 102.
Thus, server 110 is able to provide a graphical user interface
(GUI) to developers 102 of system 100 in the form of
webpages. These webpages are sent to the manager’s and
agent’s PC, laptop, mobile device, PDA or the like device
106, and would result in the GUI being displayed.

As will be appreciated by those skilled in the relevant
art(s) after reading the description herein, alternate aspects
of the present disclosure may include providing a tool for
facilitating software development and detection of malicious
code insertion from database 122 to devices 106 as a
stand-alone system (e.g., installed on one server) or as an
enterprise system wherein all the components of infrastruc-
ture 100 are connected and communicate via an inter-
corporate Wide Area Network (WAN) or Local Area Net-
work (LAN). For example, in an aspect where developers
102 are all personnel/employees of the same company, the
present disclosure may be implemented as a stand-alone
system, rather than as a web service (i.e., Application
Service Provider (ASP) model utilized by various users from
different companies) as shown in FIG. 1.

Referring now to FIG. 2, a flowchart illustrating an
exemplary process 200 for collecting information about
software developer 102 behavior in a software development
environment 100 and analyzing the collected information in
order to identify malcode insertion, according to an aspect of
the present disclosure, is shown.

Process 200, which may execute within system 100 and
facilitate identification of malcode within a trusted environ-
ment such as a software development environment, source
code repository, or the like, begins at step 202 with control
passing immediately to step 204. System 101 maybe an
analysis server communicatively coupled to one or more
computing devices 106. The analysis server may be com-
municatively coupled to one or more databases 122 which
store data collected. For example, database 122 may store
data collected at step 204.

At step 204, system 101 collects data about software
developer 102 behavior during software development. Data
may be collected via sensors. Sensors are modules of system
101 which monitor code bases, computing devices 106,
network 108 activity, and other portions of system 100
apparent to those skilled in the relevant art(s) after reading
the description herein.

Sensors may collect data from a variety of sources,
including: source code repository meta-data, static code
analysis, and dynamic code analysis. Respectively, these
sensors serve as input to detectors for work, code, and test
habits, among other behaviors.

Source code repository management (SCM) software
(such as git and subversion) tracks the development of files
over time. Modifications to a file are recorded by committing
changes to that file into the repository. In addition to the
textual changes, SCM tools record meta-data pertaining to
the commit. For example, git records the author, committer,
time and date of code creation, time and date of entry into
the repository, and comments attached to the commit. The
meta-data is stored internally in the git repository and may
be accessed via command-line and graphical tools. The
meta-data may also be accessed by SCM analysis tools, such

US 9,424,426 B2

9

as cvsanaly, used by the mining software repositories
research community. The meta-data forms the major basis of
work habit analysis.

Static code analysis sensors include off-the-shelf static
security, flaw, or style analysis tools and hand-crafted static
analyzers built using clang plugins. Each of these tools
produces results for each function in a targeted source file.
The code complexity tools produce a complexity value for
each function; the remaining tools produce line-by-line
annotations which can be associated with functions by line
number.

Dynamic analysis sensors include line, branch, function,
and file coverage. For a given commit, a project build system
is directed to produce an instrumented binary capable of
recording its own execution. A testing driver executes the
instrumented binary code, which results in a trace of execu-
tion lines and paths through the original source file. The
execution record is then post-processed by a coverage
analyzer (e.g., gcov) into line and branch coverage percent-
ages for each function. Dynamic analysis provides the basic
sensors to perform test habit analysis.

At step 206, data collected in step 204 is stored. Collected
data may be stored in database 122.

At step 208, the collected data is processed in order to
determine if malcode has been inserted. Sensor data may be
utilized. Data from a plurality of sensors may be utilized in
order to perform a multi-dimensional analysis of the soft-
ware being developed. Data may be processed in a rule-
based manner. A rule-based approach relies on a fixed
definition of the characteristics of an event of interest.
Secure static code analysis tools use this approach to iden-
tify potential vulnerabilities in software. Rule-based detec-
tion of vulnerabilities works well when the distinction
between normal and abnormal behavior can be very pre-
cisely defined such as working outside of normal work hours
or patterns.

Two specific types of rules are propositional rules and
first-order predicate logic (FOPL) rules. Propositional rules
are defined over the attributes of a single domain object.

In a representation, the single objects of interest are
source code locations. Examples of locations include com-
mits, a (commit, file) pair, a function within a file, a function
within a (commit, file) pair, and so forth. The most specific
source code location we track as a distinct object is a line of
code. Attributes on a source code location object include
when a function’s file was modified, what a function’s
cyclomatic complexity is, the percentage of line coverage
achieved in testing that function, whether a line is uncov-
ered, and if a line has a static security flaw.

One form of this representation is that source code
location objects are rows in tables of like kinds. For
example, each commit level object is row in a table of all
commits. Each function level object is a row in a table of
functions. The descriptors of an object are spread over the
columns in the table. Propositional rules are tests on one or
more columns of a single row. An example of a propositional
rule is:

R1: if Time of Commit not in [0900, 1700] then Suspi-

cious Behavior
Alternatively, this rule can be expressed as:

R2: if IsRare(Time of Commit, Uniform (0900, 1700),

Threshold) then Suspicious Behavior
where IsRare computes the probability that a variable takes
a value greater than Threshold on the specified probability
distribution. In the case of R2, Uniform (0900, 1700)
specifies that all the occurrences of Time of Commit are
between 9:00 AM and 5:00 PM. Thus, the probability of

25

40

45

50

55

60

10

seeing values before 9:00 AM (and after 5:00 PM) are zero.
If Threshold in R2 is set to zero, then R2 is equivalent to R1.
Both rules recognize any commit outside of a standard
workday as suspicious. In either form, these rules represent
a commitment to a fixed definition of extreme, rare, or
abnormal behavior. In the case of R1 and R2, any deploy-
ment of these rules will note commits at 0700 as suspicious,
regardless of typical coder behavior (i.e., an individual who
arrives early to avoid commute delays), project timeline
(i.e., projects near deadline with overtime occurring), or
business processes (i.e., a 24-hour development cycle).

FOPL rules allow testing and specifying relationships
among domain objects and the attributes of those objects.
Returning to the table representation, the difference between
FOPL and propositional rules is that, in FOPL rules, com-
parisons may be made and relationships specified between
rows in addition to between columns within a single row. An
example of a FOPL rule is:

R3: if UpdatedCode(X) and UpdatedCode(Y) and not

CommonScope(X, Y) then Suspicious Behavior

An English translation and instantiation of R3 is: if Foo
and Bar are updated modules and they are not normally
modified in tandem, then the behavior is suspicious. R3
formalizes the notion that code modifications exhibit some
sort of temporal and spatial locality. The CommonScope
relation can be implemented to specify different definitions
of'locality. For example, it can consider the location of code
within a file hierarchy on the file system, the relationship
between functions in a call graph, the history of code
co-changes, and the recency of code modification.

Because of site-specific and developer-specific differ-
ences in behavior, it is useful to allow some rules to be
parameterized with respect to the sensor values that the rule
tests. In addition to a priori fixed rules, rule may be model
parameters are estimated from historical data. Thus, if there
were reason to believe that the times of commits approxi-
mated a normal distribution, the mean and variance could be
estimated from those commit times, yielding a rule:

R4: if IsRare(TimeOfCommit, Normal(mean, variance),

Threshold) then Suspicious Behavior

An English translation of R4 is: if the time of a commit
is sufficiently different from the typical time of commit
estimated from this project’s history, then the behavior is
suspicious. R2 and R4 demonstrate the difference between
identifying rarity with an a priori model (R2) and a model
with parameters inferred from the values of the TimeOf-
Commit data values (R4).

Data may also be processed and analyzed according to
algorithms developed via machine learning. Machine learn-
ing algorithms process information and learn the definition
of normal over time. Events which are unexpected are
classified as abnormal and can be highlighted for further
analysis. Machine learning algorithms excel in situations
where the definition of normal is not fixed (i.e., differs from
data set to data set) and therefore can be used effectively
without an upfront understanding of normal behavior. This
allows behaviors to be identified not only across a wide
range of habits that are collected but also over time to detect
changes in behavior.

The application of rules to raw sensor data is sometimes
referred to as a detector. Results from detectors may be
aggregated in order to identify malcode. In some aspects,
aggregation may reduce the risk of misidentification. Detec-
tors may be configured to identify malicious coding activity
within at least the following categories: coding behavior,
testing behavior, build behavior, and work habit. Detector
results may be aggregated by summing the results. In

US 9,424,426 B2

11

another aspect, detector results may be aggregated based on
code location or characteristic of the detector result. Code
locations form a natural hierarchy: files are part of a commit,
functions are part of a file, and lines are part of a function
(or the global scope of a file). In some cases, it is useful to
aggregate information to a location from locations above
and below it in the hierarchy. For example, if a commit is
identified as an odd work habit, every file within the commit
is affected. In turn, every function and line within the
affected files is also affected. So, the characteristics of a
broader code location can be inherited by more specific
locations.

Similarly, occurrences at a lower granularity can be
aggregated to a higher level. For example, an overall mea-
sure of function safety could be given by the total number of
static security findings within that function. This is naturally
represented by aggregating all the findings at program
locations within the function, counting the number of find-
ings, and associating the total count with the function.
Aggregating these results allows (1) comparison between
different functions and (2) summarizing more detailed
results at higher levels. Similar steps can be taken with
blocks, files, and commits. Together with aggregation by
type, these methods allow the system to summarize a large
amount of data.

Rules like R4 are specified with respect to historical
values. The scope of work relation in R4 is a function of
co-modified files. Comparison of objects against each other
and against the whole class of such objects can occur. For
example, individual distributions of check-in times can be
computed for each individual code module and a global
distribution of check-in times can be computed over all
modules. In the first case, details of the individual compari-
son, like parameters of a distribution, are computed on a per
object basis: how does this object compare, individually, to
other objects of the same class. In the second case, the global
comparison is made between an individual and the behavior
of the entire class. In both cases, the aggregation of infor-
mation is performed in the estimation of parameters to the
distributions.

The multiple, individual distribution computed for each
module allows the system to distinguish when a time of a
commit is suspicious for a module foo but is normal for a
module bar. The single global distribution, computed over
all modules, allows the detection of a time of commit that is
suspicious for any module. In a special case of multiple,
individual distributions, we can compare foo’s current com-
mit against its historical commits. Along with detecting
suspicious behavior in changes to oo, this can also detect an
agent masquerading to make changes to foo.

Similar groupings can be performed over code segments,
as opposed to commits, to compare trends of measures on
one function to another function and one function to the
class of all functions. Simultaneous aggregation over com-
mits and code segments allows identification of historical
trends of scope of work for developers, answering the
question: What modules are typically modified together?

At step 210, malcode findings are presented to an autho-
rized user. In various aspects, malcode findings may be
presented in one or more of the following manners: display-
ing the raw sensors which fire at given code locations, and
displaying a hierarchy of important code locations with risky
code locations highlighted. The display of raw sensors can
be a simple list of each sensor’s report, with important
information, at a given code location. The hierarchy of
locations may be trimmed in two ways. First, not all code
locations have important findings. Second, for those loca-

20

25

30

40

45

50

55

12

tions which have findings, some ranking must be done to
reduce the total number displayed. The reduction can be
done by prioritizing multiple sensor activations over single
sensor activations. Third, a partitioning of the location graph
can display sub-sets of the space of locations at one time and
control the amount of information presented to an analyst.

Process 200 terminates at step 212.

Referring now to FIG. 3, a flowchart illustrating an
exemplary process 300 for implementing an analysis engine
to identify malcode insertion in a trusted environment,
according to an aspect of the present disclosure, is shown.

Process 300, which may execute within system 100,
begins at step 302 with control passing immediately to step
304.

At step 304, the analysis server, which may be a portion
of infrastructure 101, connects to computing device 106
and/or other portions of system 100 in order to monitor the
software development environment for insider threats. In an
aspect, the analysis server connects to one or more code
repositories and/or accesses the source code itself in order to
facilitate process 300. As will be apparent to those skilled in
the relevant art(s), the analysis server may be a portion of
infrastructure 101, installed on a computing device con-
nected to network 108, distributed across multiple comput-
ing devices within system 100, or otherwise implemented.

At step 306, multiple sensors within the analysis server
collect behavioral tracking data for later analysis. The
behavioral tracking data indicates the actions developer 102
took (e.g., send build command) and the associated behav-
iors (e.g., sent command late at night, sent command after a
long pause in coding, and the like).

At step 308, the collected behavioral tracking data is
stored in database 122.

At step 310, the collected data and software being devel-
oped is analyzed in order to determine if malcode has been
inserted. The data may be analyzed in a multi-dimensional
manner. Static code analysis and behavioral analysis may be
performed. Behavioral code analysis is done by comparing
the stored behavioral tracking data to a baseline behavior
parameter stored in database 122.

At decision step 312, a result is returned based on analysis
step 310. If the analysis indicates that malcode was inserted,
process 300 proceeds to step 314. If the analysis does not
indicate the presence of malcode, process 300 proceeds to
termination step 316

At step 314, the code, development action and/or devel-
oper 102 associated with the malcode insertion is flagged for
future analysis, quarantine, removal, and/or other actions
apparent to those skilled in the relevant art(s).

Process 300 then terminates at step 316.

Referring now to FIG. 4, a block diagram of an exemplary
computer system useful for implementing various aspects
the processes disclosed herein, in accordance with one or
more aspects of the present disclosure, is shown. FIG. 4 sets
forth illustrative computing functionality 400 that may be
used to implement web server 110, devices 106 utilized by
developers 102 to access Internet 108, or any other compo-
nent of environment 100. In all cases, computing function-
ality 400 represents one or more physical and tangible
processing mechanisms.

Computing functionality 400 may comprise volatile and
non-volatile memory, such as RAM 402 and ROM 404, as
well as one or more processing devices 406 (e.g., one or
more central processing units (CPUs), one or more graphical
processing units (GPUs), and the like). Computing function-
ality 400 also optionally comprises various media devices
408, such as a hard disk module, an optical disk module, and

US 9,424,426 B2

13

so forth. Computing functionality 400 may perform various
operations identified above when the processing device(s)
406 executes instructions that are maintained by memory
(e.g., RAM 402, ROM 404, and the like).

More generally, instructions and other information may
be stored on any computer readable medium 410, including,
but not limited to, static memory storage devices, magnetic
storage devices, and optical storage devices. The term “com-
puter readable medium” also encompasses plural storage
devices. In all cases, computer readable medium 410 rep-
resents some form of physical and tangible entity. By way of
example, and not limitation, computer readable medium 410
may comprise “computer storage media” and “communica-
tions media.”

“Computer storage media” comprises volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information, such
as computer readable instructions, data structures, program
modules or other data. Computer storage media may be, for
example, and not limitation, RAM 402, ROM 404,
EEPROM, Flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a computer.

“Communication media” typically comprise computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier wave
or other transport mechanism. Communication media may
also comprise any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and
not limitation, communication media comprises wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared, and other
wireless media. Combinations of any of the above are also
included within the scope of computer readable medium.

Computing functionality 400 may also comprise an input/
output module 412 for receiving various inputs (via input
modules 414), and for providing various outputs (via one or
more output modules). One particular output mechanism
may be a presentation module 416 and an associated GUI
418. Computing functionality 400 may also include one or
more network interfaces 420 for exchanging data with other
devices via one or more communication conduits 422. In
some aspects, one or more communication buses 424 com-
municatively couple the above-described components
together.

Communication conduit(s) 422 may be implemented in
any manner (e.g., by a local area network, a wide area
network (e.g., the Internet), and the like, or any combination
thereof). Communication conduit(s) 422 may include any
combination of hardwired links, wireless links, routers,
gateway functionality, name servers, and the like, governed
by any protocol or combination of protocols.

Alternatively, or in addition, any of the functions
described herein may be performed, at least in part, by one
or more hardware logic components. For example, without
limitation, illustrative types of hardware logic components
that may be used include Field-programmable Gate Arrays
(FPGAs), Application-specific Integrated Circuits (ASICs),
Application-specific Standard Products (ASSPs), System-
on-a-chip systems (SOCs), Complex Programmable Logic
Devices (CPLDs), etc.

10

15

20

25

30

35

40

45

50

55

60

65

14

The terms “module” and “component” as used herein
generally represent software, firmware, hardware, or com-
binations thereof. In the case of a software implementation,
the module or component represents program code that
performs specified tasks when executed on a processor. The
program code may be stored in one or more computer
readable memory devices, as described with reference to
FIG. 4. The features of the present disclosure described
herein are platform-independent, meaning that the tech-
niques can be implemented on a variety of commercial
computing platforms having a variety of processors (e.g.,
desktop, laptop, notebook, tablet computer, personal digital
assistant (PDA), mobile telephone, smart telephone, gaming
console, and the like).

While various aspects of the present disclosure have been
described above, it should be understood that they have been
presented by way of example and not limitation. It will be
apparent to persons skilled in the relevant art(s) that various
changes in form and detail can be made therein without
departing from the spirit and scope of the present disclosure.
Thus, the present disclosure should not be limited by any of
the above described exemplary aspects, but should be
defined only in accordance with the following claims and
their equivalents.

In addition, it should be understood that the figures in the
attachments, which highlight the structure, methodology,
functionality and advantages of the present disclosure, are
presented for example purposes only. The present disclosure
is sufficiently flexible and configurable, such that it may be
implemented in ways other than that shown in the accom-
panying figures (e.g., implementation within computing
devices and environments other than those mentioned
herein). As will be appreciated by those skilled in the
relevant art(s) after reading the description herein, certain
features from different aspects of the systems, methods and
computer program products of the present disclosure may be
combined to form yet new aspects of the present disclosure.

Further, the purpose of the foregoing Abstract is to enable
the U.S. Patent and Trademark Office and the public gen-
erally and especially the scientists, engineers and practitio-
ners in the relevant art(s) who are not familiar with patent or
legal terms or phraseology, to determine quickly from a
cursory inspection the nature and essence of this technical
disclosure. The Abstract is not intended to be limiting as to
the scope of the present disclosure in any way.

What is claimed is:

1. A computer-implemented method of identifying mali-
cious code insertion in trusted environments, the method
comprising the steps of:

(a) connecting an analysis server to a computing device
utilized by a software developer to develop at least a
portion of a software program;

(b) collecting, via a plurality of sensor modules coupled
to the analysis server, behavioral tracking data from the
computing device, the behavioral tracking data indi-
cating a software developer behavior during software
development and including metadata indicating a
development action, the development action caused by
the software developer behavior and the behavioral
tracking data includes testing behavior, wherein col-
lecting further comprises producing, for a given com-
mit, an instrumented binary code to record its own
execution, and executing by a testing driver the instru-
mented binary code, which results in a trace of execu-
tion lines and paths through an original source file;

(c) storing, in a database communicatively coupled to the
analysis server, the behavioral tracking data;

US 9,424,426 B2

15

(d) analyzing, via the analysis server, the software pro-
gram for the presence of malicious code, the analysis
including a comparison of the stored behavioral track-
ing data to a baseline behavior parameter stored in the
database;

(e) flagging, via the analysis server, the development
action where the analysis indicates malicious code
insertion; and

() presenting, via a user interface communicatively
coupled to the analysis server, an analysis report, the
analysis report comprising an analyzing step result and
a flagging step result.

2. The method of claim 1, analyzing step (d) further

comprising:

performing a static code analysis of the software program;

wherein the analysis indicates malicious code insertion
when a behavioral anomaly and a static code analysis
anomaly are detected.

3. The method of claim 1, wherein, the plurality of sensors
further to collect behavioral tracking data related to at least
one of: coding behavior, testing habits, build behavior, and
work habits.

4. The method of claim 1, wherein collecting step (b)
occurs over time.

5. The method of claim 2, wherein collecting step (b)
occurs throughout a software development lifecycle.

6. The method of claim 1, wherein the analysis indicates
malicious code insertion based on collected behavioral
tracking data from at least two of the plurality of sensors.

7. The method of claim 1, further comprising the steps of:

(g) creating the baseline behavior parameter; and

(h) storing the baseline behavior parameter in the data-
base.

8. The method of claim 7, wherein the baseline behavior
parameter is created based on industry accepted software
development processes.

9. The method of claim 7, wherein the baseline behavior
parameter is based on collected behavioral tracking data.

10. The method of claim 7, wherein the baseline behavior
parameter is based on collected behavioral tracking data
from a plurality of software developers.

11. One or more non-transitory computer storage media
having stored thereon multiple instructions that facilitate the
identification of malicious code insertions by, when
executed by one or more processors of a computing device,
causing the one or more processors to:

connect an analysis server to a computing device utilized
by a software developer to develop at least a portion of
a software program;

collect, via a plurality of sensor modules coupled to the
analysis server, behavioral tracking data, that com-
prises instruction to produce, for a given commit, an
instrumented binary code to record its own execution,
from the computing device, the behavioral tracking

20

35

40

45

16

data indicating a software developer behavior during
software development and including metadata indicat-
ing a development action, the development action
caused by the software developer behavior and the
behavioral tracking data includes testing behavior;

execute by a testing driver the instrument binary code,
which results in a trace or execution lines and paths
through an original source file;

store, in a database communicatively coupled to the

analysis server, the behavioral tracking data;
analyze, via the analysis server, the software program for
the presence of malicious code, the analysis including
a comparison of the stored behavioral tracking data to
a baseline behavior parameter stored in the database;

flag, via the analysis server, the development action where
the analysis indicates malicious code insertion; and

present, via a user interface communicatively coupled to
the analysis server, an analysis report, the analysis
report comprising an analyzing step result and a flag-
ging step result.

12. One or more non-transitory computer storage media
as recited in claim 11, wherein the multiple instructions
further cause one or more processors to:

perform a static code analysis of the software program;

wherein the analysis indicates malicious code insertion

when a behavioral anomaly and a static code analysis
anomaly are detected.

13. One or more non-transitory computer storage media
as recited in claim 11, wherein the plurality of sensors
further to collect behavioral tracking data related to at least
one of coding behavior, testing habits, build behavior, and
work habits.

14. One or more non-transitory computer storage media
as recited in claim 11, wherein collection of behavioral
tracking data from the computing device occurs over time.

15. One or more non-transitory computer storage media
as recited in claim 11, wherein collection of behavioral
tracking data from the computing device occurs throughout
a software development lifecycle.

16. One or more non-transitory computer storage media
as recited in claim 11, wherein the analysis indicates mali-
cious code insertion based on collected behavioral tracking
data from at least two of the plurality of sensors.

17. One or more non-transitory computer storage media
as recited in claim 11, wherein the multiple instructions
further cause one or more processors to:

create the baseline behavior parameter; and

store the baseline behavior parameter in the database.

18. One or more non-transitory computer storage media
as recited in claim 17, wherein the baseline behavior param-
eter is based on collected behavioral tracking data from a
plurality of software developers.

#* #* #* #* #*

